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Abstract. We investigate the stochastic dynamics of an one-dimensional ring with N self-driven Brownian
particles. In this model neighboring particles interact via conservative Morse potentials. The influence of
the surrounding heat bath is modeled by Langevin-forces (white noise) and a constant viscous friction
coefficient γ0. The Brownian particles are provided with internal energy depots which may lead to active
motions of the particles. The depots are realized by an additional nonlinearly velocity-dependent friction
coefficient γ1(v) in the equations of motions. In the first part of the paper we study the partition functions
of time averages and thermodynamical quantities (e.g. pressure) characterizing the stationary physical
system. Numerically calculated non-equilibrium phase diagrams are represented. The last part is dedicated
to transport phenomena by including a homogeneous external force field that breaks the symmetry of the
model. Here we find enhanced mobility of the particles at low temperatures.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.70.Ln Non-equilibrium and
irreversible thermodynamics – 05.40.-a Fluctuation phenomena, random processes, noise and Brownian
motion

1 Introduction

The theory of passive Brownian motion [1] describes the
dynamics of a macroscopic particle in a surrounding heat
bath (e.g. liquid). It links viscous friction with the fluctu-
ations reflecting the underlying microscopic (e.g. atomic,
molecular) structure of the bath. Several models of self-
driven Brownian particles were developed within the the-
ory of active Brownian motion and also recently used
for modeling some new types of complex motion [2–5].
Here we will continue the discussion of an one-dimensional
model of active Brownian particles with conservative non-
linear Morse interactions between next neighbors. In [6]
we introduced this system and concentrated basically on
the effects of the nonlinear deterministic dynamics corre-
sponding to the temperature limit T → 0 when there are
no fluctuations in the bath. We studied several types of
attractors representing different types of active stationary
motions (e.g. stable nonlinear waves or cluster rotations)
and also began the discussion of the model at non-zero
temperature which we would like to extend here.

The Morse potential (Fig. 1) for the interaction be-
tween two particles reads

UMi =
a

2b
(e−bri − 1)2 − a

2b
(1)

and it is closely related to the well-known Toda
potential [7]

UTi =
a

b
( e−bri − 1) + ari. (2)
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Fig. 1. Morse potential UMi plotted for a = 1 ([a] = σγ2
0m
−1

and [b] = σ−1).

In (1) and (2) the parameter a controls the amplitude of
the corresponding force while the parameter b is responsi-
ble for the stiffness of the spring connecting two interact-
ing particles. The relative coordinates

ri = x+1 − xi − σ (3)

represent the distance between two neighboring particles
at positions xi and xi+1 reduced by the equilibrium length
σ of the springs. In this notation Morse and Toda poten-
tial have their minimum at ri = 0 i.e. both potentials
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are repulsive for ri < 0 and attracting for ri > 0. The
main difference between the two types of interactions is
the behavior for ri →∞. In contrast to the Toda force the
Morse force tends to zero for long distances between the
particles. This difference leads to new physical effects in
a Morse chain (e.g. formation of clusters) if the particle
density

n = N/L (4)

is sufficiently low [6]. In (4) N denotes the number of
Brownian particles on the ring and L the length of the
ring.

One reason for the special interest in 1d-Toda mod-
els is the existence of exact solutions for the conser-
vative lattice and also for the statistical equilibrium
thermodynamics [7,8]. The advantage of the Morse po-
tential compared with the Toda potential is that it repre-
sents a more realistic interaction, e.g. it is similar to the
well-known Lennard-Jones potential describing molecular
interactions. Unfortunately, there are neither many ana-
lytical results nor exact solutions for the dynamics of a
Morse lattice [6,9].

A first approach to investigate active Toda rings with
the aim to model dissipative solitons was given recently
in [5,10,11]. In these papers it was shown theoretically,
numerically and experimentally that in active Toda rings
stable running soliton excitations may be generated. The
active Brownian particles in our model are characterized
by the ability to take up energy from an external reser-
voir, to store this energy in internal depots and to convert
depot energy into kinetic energy of motion. The energy
exchange process between the particles and the external
reservoir is supposed to be deterministic and independent
of the fluctuations in the heat bath. This depot model
was proposed in [4,12,13] and gives a nonlinearly veloc-
ity dependent contribution γ1(v) to the effective friction
coefficient γ(v) of a Brownian particle

γ(v) = γ0 + γ1(v). (5)

In (5) the parameter γ0 is the constant coefficient of vis-
cous friction from the interaction between particle and
heat bath. Hence, via γ1(v) = 0 our model may be re-
duced to the corresponding thermodynamical equilibrium
system.

With respect to previous investigations [6] all results
found for active Toda chains [5,10,11] remain valid for
an active Morse ring with high particle density n � σ−1

since in this limit a Morse ring with stiffness parameter b
converges to a Toda ring with stiffness parameter 2b. Only
for low particle densities the active Morse ring shows new
effects (e.g. formation of rotating clusters) that can not
be observed in Toda chains. Concisely, the active Morse
ring we intend to deal with may be driven from an exact
soluble equilibrium Toda system [7,8] to states featuring
active motions and clustering phenomena.

The paper is organized as follows. In Section 2 we in-
troduce the equations of motion and discuss the dynamics
and statistics of non-interacting active Brownian particles.

Section 3 is dedicated to studies of active Morse rings at
non-zero temperature of the heat bath. We investigate the
system with regard to coherent motions as well as from
the thermodynamical point of view (e.g. non-equilibrium
phase diagrams). In Section 4 we study transport in pres-
ence of a homogeneous external field.

2 Stochastic dynamics of active Brownian
particles

2.1 Equations of motion

Our one-dimensional model of active Brownian particles
consists of N point masses m located at the coordinates xi
(i = 1, . . . , N). The particles are connected to their next
neighbors at both sides by pair interactions

Fi = F (xi−1, xi, xi+1). (6)

The conservative force on the ith particle with coordinate
xi may be obtained by differentiating the full potential
energy of the ring

U =
N∑
i=1

UMi (7)

with respect to xi. In order to realize a ring of length L
we choose the periodic boundary conditions

xi+N = xi + L. (8)

If we imagine the particles to be surrounded by a heat
bath of smaller particles the Langevin equations for the
individual velocities vi = dxi/dt are given by

m
d
dt
vi − Fi = −γ0vi +Ai(t). (9)

The (dissipative) terms on the r.h.s. represent the inter-
action between a Brownian particle and the heat bath.
In this notation the viscous friction coefficient γ0 is
defined by

γ0 =
m

τrel
(10)

where τrel is the mean relaxation time of the Brownian
particles due to viscous friction in the heat bath. The
stochastic Langevin forces Ai are determined by

〈Ai(t)〉 = 0 〈Ai(t′)Aj(t)〉 = 2Dδijδ(t′ − t), (11)

i.e. they represent Gaussian white noise reflecting the
atomic or molecular structure of the bath. For (9) the
temperature T of the heat bath, D and γ0 are connected
via the Einstein relation

D = γ0T. (12)

In (12) we used an unit temperature [T ] = k−1
B with kB

denoting the Boltzmann constant. The situation described
so far corresponds to a typical equilibrium system charac-
terized by purely passive friction and it obeys the standard
equilibrium statistics.
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2.2 Depot model for self-driven particles

As indicated before we would like to investigate the effects
of active friction corresponding to an additional nonlin-
early velocity dependent friction term in the equations of
motions (9). As a simple model of active friction we con-
sider the friction force proposed in [4,12,13]

γ1(v) v = − q

(c/d2) + v2
v (13)

that models active particles carrying refillable energy de-
pots. In (13) the positive quantity q describes the flux of
energy from an external reservoir or field into the depots
carried by the particles. The parameter c > 0 is connected
to internal dissipation and d2 > 0 controls the conversion
of the energy taken up from the external field into kinetic
energy. In fact, the parameter q and the ratio

κ = c/d2 (14)

are the essential parameters of this model. Thus the pa-
rameter situation κ = 0 describes particles without in-
ternal dissipation. Using the effective friction coefficient
γ(vi) defined in (5) we may write down the full Langevin
equation for our model

m
d
dt
vi − Fi = −γ(vi)vi +Ai(t). (15)

In case of q = 0 (no feeding with external energy) or
κ = ∞ (no energy conversion) there is no pumping
(i.e. γ1(vi) = 0) and (15) coincides with the Langevin
equations (9) corresponding to the equilibrium system.
For convenience we introduce a new parameter

µ =
q

γ0
− κ (16)

and rewrite

γ(v) = γ0

(
1− κ+ µ

κ+ v2

)
= γ0

v2 − µ
κ+ v2

· (17)

Obviously the parameter µ plays the role of a bifurcation
parameter since γ(v) = 0 if v = ±√µ. The effect of the
effective friction force −γ(v)v on the dynamics can also
be illustrated by introducing the effective dissipative po-
tential

Vdiss(v) =
∫
γ(v) v dv (18)

=
1
2
γ0 [v2 − (κ+ µ) ln (κ+ v2)].

The shape of Vdiss for different values of µ and κ can be
seen in Figure 2.

For µ > 0 the dissipative potential is bistable i.e. it
has two minima at ±√µ. This means that a free pumped
Brownian particle aims to reach one of these velocities in
the stationary state corresponding to so-called active or
self-driven motion. On the other hand, parameter values
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Fig. 2. Dissipative potential Vdiss(v) (units are [κ] = [µ] =
σ2γ2

0m
−2). For (a) κ = 0 and µ > 0 the dissipative potential

is bistable and diverges for v → 0. In case of µ ≤ 0 it is mono-
stable.

µ < 0 lead to a damped system. Then the only stable, sta-
tionary velocity is v = 0, i.e. all motions come to rest after
a certain relaxation time. According to (17) for µ > 0 the
effective friction coefficient γ(v) converges to γ0 for large
velocities v2 � µ, but for small velocities v2 < µ the γ(v)
is negative. This region corresponds to pumping with free
energy on the cost of the depots and the dynamics devel-
ops active forms of motions. For simplicity we will assume
throughout this paper that the external energy reservoir
providing the energy for the depots is not explicitly time
dependent. The generalization to active friction on the
basis of finite time-dependent depots which can be filled
again at discrete places (filling stations) is straightforward
according to our earlier work [4,12,13].

Before we begin the analysis of the model it may be
useful to give one motivating interpretation for the model.
In some very simple sense one can think of the Brownian
particles to represent small biological objects (e.g. bacte-
ria in a liquid) which are able to move actively if there is
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enough food (the energy reservoir). At intermediate dis-
tances they feel attracted by each other but due to their
spatial extension (which is characterized by σ) there is
also a repulsive component for very short distances. The
stochastic force models a liquid that can take different
temperature values and contains the organisms.

Characteristic units

In order to reduce the number of parameters in our model
it is useful to choose characteristic units of reference. As
we intend to investigate homogeneous rings we may use a
unit system where m = 1, σ = 1 and γ0 = 1. The first
two choices simply correspond to fixing unit mass and unit
distance. The first and third together give a characteristic
unit time because of (10). Thus the unit time in our model
is given by the relaxation time due to viscous friction in
absence of pumping. Choosing this system of reference
automatically implies that all remaining parameters are
measured in this unit system. With these considerations
our working equation is given by

d
dt
vi − Fi =

[
κ+ µ

κ+ v2
i

− 1
]
vi +Ai(t) (19)

where now µ = q − κ.

2.3 Fluctuation-dissipation-theorem

At this point it is worth to have a look at the
fluctuation-dissipation-theorem (FDT) given by the Ein-
stein relation (12). The FDT links the amplitude D of the
stochastic force with the physical temperature T of the
heat bath and the viscous friction coefficient γ0. For pas-
sive Brownian motion this result is obtained by the condi-
tion of statistical equilibrium between Brownian particles
and surrounding medium. An important question to an-
swer is: Does this FDT still make sense in our model?

As explained in the introduction, we assume that in
our model the energy transfer from the external reservoir
and the conversion of depot energy into kinetic energy of
the particles are completely independent of the fluctua-
tions in the heat bath, i.e. it is a property of the particles
exclusively. In addition, we want this model to represent
a classical equilibrium system in absence of the determin-
istic pumping and at high velocities (limit of viscous fric-
tion), hence we expect a Maxwell-like velocity distribu-
tion for these two limits only. From this point of view
it is sensible to postulate that the Einstein relation (12)
is the valid FDT also for the non-equilibrium system. In
other words, we suppose that the noise generated by the
heat bath is not influenced by the deterministic pumping
which is supposed to be a property of the Brownian par-
ticles themselves. In the characteristic units of the model
we even have

D = T.

This approach means, that we neglect feedback between
particles and heat bath, which is likely to occur in real
systems.

An extensive discussion of non-equilibrium models
where the fluctuation dissipation theorem differs from the
Einstein relation (12) e.g. models with velocity dependent
viscous friction coefficients may be found in [14].

2.4 Statistics of free particles

Before we go on to discuss the Morse rings let us briefly
look at the stationary probability density f(v) of free
active Brownian particles. This situation corresponds to
choosing a = 0. With respect to the considerations in
Section 2.3 the density function of a single free particle
is determined by the following Fokker-Planck-Equation
(FPE) [13,14]

∂f

∂t
= T

∂2f

∂v2
+

∂

∂v
γ(v)vf. (20)

For the stationary situation (20) may be simplified by in-
tegration to

0 = T
∂f

∂v
+ γ(v)vf, (21)

which is solved by

f(v) = N exp
[
−Vdiss(v)

T

]
· (22)

Inserting (18) we obtain

f(v) = N (κ+ v2)
µ+κ
2T exp

[
− v

2

2T

]
· (23)

The constant N has to be determined by normalization of
f(v). For the special case κ = 0 corresponding to particles
without internal dissipation we get

N−1 = (2T )
T+µ
2T Γ

(
T + µ

2T

)
(24)

where the Euler Γ -function is defined by

Γ (z) =
∫ ∞

0

tz−1 e−t dt. (25)

In our model the single free particle situation is equivalent
to a ring with N = 1. We tested the analytical result (23)
by numerical simulations of the Langevin equations for a
free particle with Fi = 0 and found a good agreement (see
Fig. 3). As explained in the previous section, we can only
expect a Maxwell-type probability density if the pumping
is switched off.

The distribution function of an ideal 1d-non-
equilibrium gas with N non-interacting particles is simply
given by

f(v1, . . . , vN ) = ΠN
i=1f(vi). (26)

For free particles the corresponding stationary FPE is ob-
viously very easy to solve. Unfortunately this will be com-
pletely different if we include interactions between the
particles. Hence if dealing with interacting particles we
will return to the analysis of the Langevin equations (19)
which represent an equivalent description of the stochastic
dynamics (Fig. 3).



J. Dunkel et al.: Thermodynamics and transport in an active Morse ring chain 515

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

f(
v
)

v [m
1/2

]

T = 0.2

k = 1

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

-6 -4 -2 0 2 4 6

f(
v
)

v [m
1/2

]

T = 2

k = 0

(b)

Fig. 3. The continuous line corresponds to the probability
density analytically calculated from (23). The normalization
constants were obtained by numerical integration. For the nu-
merically calculated graphs (boxes) we generated histograms
and divided by the box width.

3 Brownian particles with Morse interactions

3.1 Preliminary works

Before we start the discussion of Morse rings at non-zero
temperature T > 0 we review relevant results from previ-
ous works. In [6] we analyzed Morse rings at T = 0. We
found that depending on the density of particles n = N/L
there exist different particle configurations on the ring
which minimize the potential energy U . Independent of
the number N of particles the configuration with equal
distances between all particles corresponds to a minimum
as long as

n >
b

ln 2 + bσ
= nc. (27)

In the density region n� nc Morse and Toda rings show
qualitatively the same mono-stable behavior. For n→∞

Morse rings with parameter b behave like Toda rings with
parameter 2b. Moreover there exists a second critical value
n̄c of the density such that for n < n̄c new minima of the
potential energy appear. These are N equivalent configu-
rations each corresponding to a single cluster of N parti-
cles. Between the two critical density values we have the
relation n̄c ≥ nc where n̄c = nc only if N = 2. We calcu-
lated n̄c for N = 3

n̄c(3) =
3b

ln 27
4 + 3bσ

> nc (28)

and found that n̄c(N) increases monotonically with N but
is bounded by n = σ−1. These results mean that forN ≥ 3
in the transition interval (nc, n̄c) both the clusters and the
uniform distribution represent local minima of the poten-
tial energy. For n < nc only clusters correspond to stable
configurations and we could evaluate ZsN = 2N − 2 − N
for the number of saddle points (of arbitrary rank) in the
(N − 1)-dimensional potential energy landscape. These
metastable points correspond to symmetric combinations
of smaller clusters. In the pure cluster regime n < nc the
total number of equilibria is given by ZN = 2N − 1, i.e.
we have N minima (cluster), ZsN saddles and 1 maximum
(equal distances 1/n between the particles).

Having summarized the statics so far we will now give
a short notice of the results obtained for the determinis-
tic nonlinear dynamics at T = 0. For µ < 0 correspond-
ing to under-critical pumping the ring relaxes into one
of the minima of the potential energy. In case of over-
critical pumping we have to distinguish between the dif-
ferent density regimes. If n > n̄c the Morse ring is Toda-
like and we may identify N + 1 qualitatively different
attractors [5,11,15] representing stationary uniform rota-
tions, 1-soliton solutions, 2-soliton solutions,... up to anti-
phase oscillations in case of N = even. In fact the absolute
number of attractors is bigger since there is for example
index translation symmetry in the system. During the sta-
tionary uniform rotations the particles have occupied the
minima of the potential energy. These types of attractors
are always found independent from the density regime.

In the transition region n̄c > n > nc for weak over-
critical pumping only the rotations and small stationary
oscillations around the ground state configurations could
be observed. By ground state configurations we mean a
configuration of the particles that minimizes the full en-
ergy of the system. The same is true for nc > n and
weak pumping. Finally, for strong over-critical pumping
we have again the Toda-like attractor structure in all
density regimes since the exponentially repulsive forces
of the potential dominate the dynamics. The expressions
“strong” and “weak” pumping refer to µ � 2∆Ui and
µ� 2∆Ui where∆Ui is the depth of the minima of U . The
two inequalities just reflect a comparison between kinetic
and potential energy. In the intermediate n̄c > n > nc re-
gion there are two different values for ∆Ui (corresponding
to the two types of minima) and both of them are rela-
tively small. If nc > n all ∆Ui take same values. For very
low densities n → 0 they may be approximated by the
depth of the Morse potential ∆UM = a/(2b).
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Since the intermediate density region bears some more
complications compared to the others we are rather going
to concentrate on the low and high density limits. This is
somewhat justified by the fact that the system responds
to the special features of this region only at very weak
internal pumping and very low temperatures.

3.2 Low temperature regime

At very low temperatures 0 < T � µ the stochastic influ-
ence of the heat bath may be considered as a perturbation
of the deterministic system with T = 0. Since the deter-
ministic terms in the equations of motions (19) represent
the dominating contributions to the dynamics of the sys-
tem we may expect that the stationary behavior is still
similar to the one described in the previous section. Thus
a first approach to characterize the stochastic system de-
scribed by Langevin equations (19) is trying to find out
which attractors are favored by the Brownian particles at
small T > 0. For the noisy system the word “attractor”
must not be understood in the sense of its strict math-
ematical definition but it has to be seen as a useful de-
scription of such subsets of the phase space which are (on
average) more frequently visited than others. At least at
low temperatures these subsets are found near the original
attractors of the deterministic system. Basically, we try to
find out which types of active motions are more likely than
others if noise is included.

For deterministic systems with T = 0 each attractor
corresponds to a stable invariant subset AεP of the phase
space P = {x1, . . . , xN , v1, . . . , vN} = {X,V }. Each tra-
jectory (X(t),V (t)) may be characterized by the time av-
erages

〈Z〉τ =
1
τ

∫ τ

0

Z(t) dt (29)

of physical quantities Z(t) = Z(X(t),V (t)) like kinetic
energy, momenta etc. For τ → ∞ the system approaches
the attractor A if the trajectory lies in the attractor basin
B(A)εP and we may define

〈Z(A)〉 = lim
τ→∞

〈Z〉τ . (30)

If a system with a finite number of attractors is subject
to stochastic initial conditions then the stationary proba-
bility density functions f(〈Z〉τ ) at T = 0 are discrete and
given by

f(〈Z〉) =
∑
A

pA δ(〈Z〉 − 〈Z(A)〉). (31)

The coefficients pA are simply given by

pA =
vol[B(A)]

vol[P ]
(32)

where vol[B(A)] is the phase space volume of the attractor
basin B(A). The coefficients pA may be determined exper-
imentally by numerical simulations. We already used this

method to identify the attractors of active Toda rings [5].
The procedure is straightforward in the way that one sim-
ply has to simulate the dynamical equations while at the
same time measuring a certain quantity. Using the results
〈Z〉 of many runs with different initial conditions one gen-
erates histograms of the relative frequencies h[〈Z〉] and
the density functions f(〈Z〉) may be obtained from the
latter when dividing by the box width.

For our system the time average of the mean ensemble
velocity 〈Z〉 = 〈〈v〉N 〉 ≡ 〈〈v〉〉 is defined by

〈〈v〉〉 = lim
τ→∞

1
τ

∫ τ

0

1
N

N∑
i=1

vi(t) dt. (33)

This is a suitable quantity to describe stationary behav-
ior e.g. for uniform rotations at T = 0 we would expect
〈〈v〉〉 = ±√µ. Additionally we are going to use the tem-
poral average of the ensemble sum over mean square dis-
placements 〈Z〉 = 〈〈∆ρ2〉N 〉 from the average distance
n−1 where

〈∆ρ2〉N =
1

N(N − 1)

N∑
i=1

[ρi(t)− (1/n)]2 (34)

and ρi = σ + ri = 1 + ri. This quantity is minimal
〈〈∆ρ2〉〉 = 0 for uniform rotations with equal distances
between the particles and it increases for clustering states.

For T > 0 the approach explained above has to be
slightly modified, the system may now switch between at-
tractor regions due to the thermal fluctuations. Since we
are interested in the most frequently visited phase space
regions we rather measure time averages over many con-
secutive time intervals ∆τ � 1 of one single simulation
run instead of calculating histograms over a large number
of runs with different initial conditions as with T = 0.

In Figures 4–8 we plotted the results of our simulations
for different parameter constellations. In all simulations
we have fixed the parameter κ = 1 which just means that
internal dissipation within the particles and conversion of
depot energy into kinetic energy are equally large. The
internal pumping is then controlled by µ. Because of the
considerations in Section 3.1 we typically concentrate on
the following two situations

1. Toda-like limit (mono-stable potential energy) charac-
terized by n� n̄c.

2. Low density limit n < nc (multi-stable potential en-
ergy) and weak pumping µ� ∆U .

Only in the second case clusters may occur at low temper-
atures due to the multi-stability of the potential energy.

High density (Toda-like) Morse ring

We already mentioned above that for T = 0 we have N+1
qualitatively different attractors. Each of these attractors
is characterized by different values of 〈〈v〉〉 and 〈〈∆ρ2〉〉.
In Figure 4 we plotted the histograms for the relative fre-
quencies of appearance within 1000 runs with different
initial conditions for a ring with N = 4. More exactly
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Fig. 6. Numerically generated probability densities for a
(Toda-like) Morse ring with N = 4 Brownian particles, n =
1.2, b = 1, a = 1, µ = 1 and T > 0. For illustrative reasons we
have smoothened the numerically calculated curves in our pic-
tures using bezier lines. At low temperatures the phase space
regions near to the rotation attractors are more frequently vis-
ited than the others.

we always started with equal distances between all parti-
cles and initial velocities randomly taken from a standard
normal distribution. If one had used random initial posi-
tions and momenta taken from uniform distributions the
heights of the histogram boxes would give the experimen-
tal values of the pA in (31). For all simulations we used
the classical Euler algorithm with discretization intervals
dt = 0.0001 and the “stationary” time averages were mea-
sured between 25 < t < 50.

In Figure 6 one can see how the probability density
behaves when the temperature of the heat bath is in-
creased. In agreement with the procedure described before
we now used one long run and measured the time aver-
ages over 104 consecutive time intervals of length ∆t = 25.
The explicit results for 〈〈v〉〉 taken over each of the 1000
measuring intervals between t = 2×105 and t = 2.25×105

are shown in Figure 5.
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Fig. 7. Histograms for a low-density Morse ring with N = 4
particles at T = 0, n = 0.3 < nc = 0.59, µ = 1, a = 10,
b = 1. Two very small peaks at 〈〈v〉〉 = ±1 corresponding to
the rotation attractors are not visible since these attractors are
very seldomly approached under the chosen stochastic initial
conditions. Thus the visible peak corresponds to oscillations
around the energy ground state i.e. anti-phase oscillations in
clusters.

From these simulations we calculated the probability
densities. As is to be expected, for high temperatures the
shape of the velocity densities comes close to a Gaussian
since the stochastic forces dominate the dynamics in this
region. The interesting effect can be observed at low tem-
peratures. Here the system obviously prefers the rotation
attractors in other words the more coherent motions.

Low density Morse ring

By choosing n < nc the potential energy U has N min-
ima, each corresponding to a cluster configuration. The
clusters my be distinguished by the index of the first par-
ticle of the cluster for example thus they only differ by
index translations. For small pumping characterized by
0 < µ/2 � ∆Ui the deterministic system with T = 0
has only the rotation attractors (now cluster rotations)
with 〈〈v〉〉 = ±µ or secondly it may oscillate around the
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Fig. 8. Numerically generated probability densities for low-
density Morse rings with N = 4, n = 0.3, b = 1, a = 10, µ = 1
and T > 0. Again at low temperatures the phase space regions
near to the rotation attractors are more frequently visited than
the others. In the second diagram the peak at 〈〈∆ρ2〉〉 ≈ 5.4
(not visible in Fig. 7) for T = 0.05 gives the deviation for the
cluster rotations.

ground state indicated by 〈〈v〉〉 = 0. In Figure 7 we plot-
ted the histograms for T = 0 corresponding to those from
Figure 4. For stochastic initial conditions like before one
can see that the attractor basins of the rotation attractors
are only seldomly touched.

It is now interesting to see (Fig. 8) that for low tem-
peratures the system is again more frequently driven close
to the rotation attractors than to the other attractor re-
gions. This seems to be a general property of this model
and it should also be generalizable for similar systems. The
argument leading to this conclusion is that at low temper-
atures the dynamics of the system is still closely connected
to the potential energy U(X). Due to the stochastic forces
the systems may cross the separatrices dividing the phase
space into attractor regions. According to numerical in-
vestigations the attractor basins of the incoherent mo-
tions are likely to be larger than those of the coherent
motions but the coherent motions (rotations) minimize
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U(X) globally. Thus once the particles have taken such
a minimizing configuration they need strong stochastic
impacts from the heat bath to leave it. Consequently, for
sufficiently low temperatures (i.e. weak fluctuations of the
bath) it is more likely to observe rotation-like motions as
compared to wavy motions. The critical temperature val-
ues Tc indicating the disappearance of the coherent mo-
tions in Figure 8 (Tc ≈ 0.12 for n = 1.2, and Tc ≈ 0.13
for n = 0.3) may also be seen as the natural limits for the
concept of analysis pursued in this subsection. As soon as
the stochastic influence of the heat bath on the dynamics
becomes stronger than the deterministic pumping a ther-
modynamical approach seems to be more appropriate and
effective. We shall proceed this way by treating the non-
linear pumping as a perturbation of the thermodynamical
equilibrium system in the next section.

3.3 Thermodynamical quantities

In this section we are interested in the behavior of typical
thermodynamical quantities (e.g. pressure) in an active
Morse ring with respect to variations of the essential pa-
rameters (temperature, pumping strength, density). Due
to the previous considerations in Section 2.3 the physical
temperature T of the heat bath is equal to the ampli-
tude parameter of the stochastic forces D. The density
n of the Morse ring is also self-evidently given (4) and
the internal pumping of the particles is characterized by
κ and µ. Thus the remaining quantity to be defined is the
pressure P . A straightforward definition by the means of a
partition function like in equilibrium statistical mechanics
is not possible since we do not know the exact probabil-
ity density for interacting, self-driven particles and, more
importantly, there is no general rule at all for deriving the
pressure from the partition functions of non-equilibrium
systems. Thus in order to find a definition that is sensible
from the physical point of view we have to try to adapt
the strategy applied in kinetic theories. In ordinary 3d-
systems (e.g. gas in a box) P is given by the temporal
average of the forces acting on a differential area of the
boundaries (walls). Obviously there are two problems with
our system: (1) It is 1d so there are no wall areas and (2)
it has periodic boundary conditions, i.e. there is no real
boundary at all. Looking for alternatives in our model it
seems useful to consider P as the time average of the forces
between neighboring particles i.e. we shall define P as in-
ternal pressure. Let us again think of the particles to be
connected be springs. The energy of a single spring in the
Morse ring is given by

UM (ρi) =
a

2b
(e−b(ρi−1) − 1)2 − a

2b
· (35)

Here we just rewrote the Morse potential from (1) using
the actual distance coordinate ρi = xi+1 − xi. Since we
want P to be an intensive quantity it may be defined by

P = − lim
τ→∞

1
τ

∫ τ

0

1
N

N∑
i=1

dUM(ρi)
dρi

dt. (36)
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Fig. 9. All numerical results presented in this section refer to
Morse potentials with parameters a = 10 and b = 2.5 giving a
depth ∆UM = 2 of the potential.

It has to be interpreted as the average local compression or
expansion of the ring and can be measured for both equi-
librium and non-equilibrium systems. We can illustrate
the above definition by considering the following configu-
rations

1. For purely attracting forces the pressure is always neg-
ative.

2. For purely repulsive forces the pressure is always pos-
itive (e.g. in Morse rings with L < 2).

At T = 0 the ring possesses a certain static pressure. This
static pressure is zero only if n = 1/σ or L = Nσ re-
spectively i.e. all springs are relaxed. In order to check
analytically whether our definition (36) of the pressure is
consistent with the definition given in equilibrium statisti-
cal mechanics we may look at the following simplification
of the Morse interaction

UH(ρi) =


∞ ρi < σ
ε
σ (ρi − 2σ) σ < ρi < 2σ
0 2σ < ρi.

(37)

This potential models incompressible particles (via the
hard-core part) of diameter σ with attractive short range
interaction and is familiar to the van-der-Waals model
[16]. A comparison of this potential with the Morse po-
tentials is plotted in Figure 9 for the parameter setting
used during the simulations. Compared to the Morse po-
tential UH(ρi) has the advantage that at least for rings
with N = 2 the statistical dynamics is analytically solu-
ble. Thus we may use it to check the consistency of (36).
Analytical discussions of the equilibrium thermodynamics
of similar non-linearly interacting systems may be found
in [17–19].

Using our unit system with σ = 1 the standard calcu-
lations [16,17] yield for the canonical sum over states of a
ring with UH and N = 2

Z2
I =

π

h2β
(L− 2) eβ(4−L)ε (38)
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if the length is 2 < L < 3,

Z2
II =

π

h2β

[
2eβε

βε
+
(

4− L− 2
βε

)
eβ(4−L)ε

]
(39)

if 3 < L < 4 and

Z2
III =

π

h2β

[
2
βε

(
eβε − 1

)
+ (L− 4)

]
(40)

if 4 < L where β = 1/T (again k = 1) and h is Planck’s
constant. The free energy is given by

F = − 1
β

lnZ2 (41)

and the pressure is its derivative with respect to the ring
volume i.e. length

P =
(
− ∂F

∂L

)
T

(42)

at constant temperature. Thus we have explicitly

P I = −ε+
T

L− 2

P II =
π

h2β2

eβ(4−L)ε

ZII2

[
1 + βε(L− 4)

]
P III =

[
2
ε

(
eβε − 1

)
+ (L− 4)

]−1

. (43)

For the first transition length L = 3 the pressure is given
by

P I(3) = T − ε = P II(3) (44)

and for the second critical value L = 4 it reads

P II(4) =
ε

2(eβε − 1)
= P III(4). (45)

Additionally we have P I(2)→∞ for L→ 2 and T > 0. In
Figure 10 one can see the approximate agreement between
the numerically calculated isotherms using definition (36)
and the analytic curves based on (43). As to expect both
diagrams show the typical structure known from the van-
der-Waals model [16].

Having defined all essential quantities P , T , n, µ and
κ consistently we are now able to generate the character-
istic phase diagrams for the non-equilibrium systems with
µ > −1 by simply integrating the Langevin equations (19)
numerically. We start again with smallest non-trivial ring
with N = 2. In Figure 11 one can see the different pres-
sure curves as functions of the density for different values
of µ at a fixed temperature.

Obviously an increase of µ has an effect similar to an
increase of T . Now it is also interesting to see what hap-
pens if we increase the number of particles. In Figure 12 we
plotted the results for a ring containing N = 10 particles.

One can see that the density-temperature region fea-
turing negative pressure is already significantly smaller
compared to the case of N = 2. Again the additional en-
ergy take-up due to the pumping leads to deformations
of the pressure curves similar to those obtained when the
temperature is increased in the equilibrium system.
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Fig. 10. Diagram (a) shows the analytically calculated curves
for the potential UH , and diagram (b) the numerically calcu-
lated equilibrium phase diagrams for the Morse ring. Through-
out the remainder of the paper each curve calculated numer-
ically from the Langevin equation is based on 30 equidistant
points (with regard to the corresponding x-axis, here n-axis).
For illustrative reasons we only plotted the measured points
for the T = 0.1-isotherm in (b). In all subsequent diagrams we
shall only represent the curves.
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Fig. 12. The upper diagram shows isotherms of the equilib-
rium system and the lower diagram the change of the (T =0.2)-
isotherm for different values of µ.

4 Transport in homogeneous external fields

Finally, we discuss the influence of a weak external
homogeneous field K. We will assume that the Brownian
particles are coupled to the field via a coupling con-
stant e. Analogously to the procedure applied above we
may choose a unit system such that e = 1, hence the full
Langevin equation reads now

d
dt
vi − Fi =

[
1 + µ

κ+ v2
i

− 1
]
vi +K +Ai(t). (46)

In the chosen unit system we have [K] = σγ2
0m
−1e−1. For

T = 0 the external field breaks the right-left symmetry of
the attractors which was also reflected in the histograms
of Section 3.2. Since the orientation of the ring may be

chosen arbitrarily so far it is sufficient to restrict the in-
vestigations on the case K > 0. This means that K itself
defines an orientation for the ring. The natural quantity
to characterize transport processes is the mean station-
ary current j which may be easily identified in our system
with

j = e 〈〈v〉〉 = 〈〈v〉〉. (47)

The definition of 〈〈v〉〉 was already given in (33)

〈〈v〉〉 = lim
τ→∞

1
τ

∫ τ

0

1
N

N∑
i=1

vi(t) dt.

and it allows us to measure j directly from computer ex-
periments. If the stationary probability density for the ve-
locities f(v1, . . . , vN ) is known then j may as well be cal-
culated analytically from

j =
1
N

∫ [
ΠN
i=1 dvi

]
f(v1, . . . , vN )

N∑
i=1

vi. (48)

Apparently the investigation of the current is only inter-
esting in the presence of thermal fluctuations correspond-
ing to T > 0. Due to the symmetry of the model we have
j = 0 if the external field is switched off (K = 0).

4.1 Ideal non-equilibrium gas

The distribution function of the ideal 1d-non-equilibrium
gas (i.e. Fi = 0) with N particles is given by

f(v1, . . . , vN ) = ΠN
i=1f(vi) (49)

where f(vi) is the single particle distribution function of
the ith particle (52). With respect to (48) the stationary
current is given by

j =
∫ [

ΠN
i=1 dvi f(vi)

][
1
N

N∑
i=1

vi

]
=
∫ ∞
−∞

dv v f(v) (50)

where f(v) is the probability of a single particle. Com-
pared with (20) the probability density f(v) is now
determined by be the slightly modified FPE

∂f

∂t
= T

∂2f

∂v2
+

∂

∂v

{[
γ(v)v −K

]
f

}
· (51)

The stationary solution of (51) is

f(v) = N ′ exp
[
−Vdiss(v)−Kv

T

]
· (52)
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stationary single particle probability density.

In Figure 13 the free single particle probability density
f(v) is shown for different values of the external field. For
the special case κ = 0 corresponding to particles without
internal dissipation we can solve (50) and find

j = K

(
1 +

µ

T

)
1F1

[
3T+µ

2T , 3
2 ,

K2

2T

]
1F1

[
T+µ
2T , 1

2 ,
K2

2T

] (53)

where the confluent hyper-geometric Kummer function is
defined by

1F1[a, b, z] = 1 +
a

b

z

1!
+
a(a+ 1)
b(b+ 1)

z2

2!
+ . . . (54)

=
Γ (b)

Γ (b−a)Γ (a)

∫ 1

0

eztta−1(1− t)b−a−1 dt.

For weak fields K ≈ 0 we may expand

j = K

(
1 +

µ

T

) (
1− µ

3T 2
K2

)
+ O(K4). (55)

Thus we observe a hyperbolical decrease of j for high tem-
peratures. We may also use (55) to define a critical tem-
perature Tc characterizing the transition from coherent
motions to incoherent motions by demanding

d
dT
[
j −O(K4)

]
= 0 (56)

if T = Tc. Then we obtain

Tc =
1
3
(
K2 +K

√
K2 + 9µ

)
. (57)

For K � 3
√
µ this may be simplified further

Tc ≈ K
√
µ. (58)

Using (58) in (55) the corresponding current is

jc =
2
3

(K +
√
µ). (59)
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Fig. 14. (a) Analytically calculated current j (solid line) for
a the ideal non-equilibrium gas with κ = 0 as a function of
the temperature and approximation (dotted line) from (55).
Parameters K = 0.1 and µ = 1 give critical values Tc = 0.1 and
jc = 0.73. (b) Numerically integrated current for three different
values of the external field and κ > 0. If the external field is
switched off, K = 0, the probability density is symmetric and
the mean current vanishes.

For κ > 0 the integral (50) has to be solved numerically
and we plotted the results for κ = 1 and different val-
ues of K in Figure 14. As one can see in this picture the
current decreases with increasing temperature. In the low
temperature limit T → 0 its maximum value is given by
j ≈ √µ+K corresponding to the global maximum of the
single particle distribution function.

4.2 Interacting particles

For interacting particles we use again the Langevin ap-
proach and calculate the current with computer experi-
ments i.e. we integrate (46) numerically and calculate the
average current from the simulation data. With regard to
the previous discussion in Section 3.1 we will restrict our-
selves to the two most significant cases of mono-stable
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Fig. 15. Current in (a) Toda-like (high-density) Morse rings
with n = 1 > n̄c and (b) for low densities n = 0.5 < nc.
One can see that the shape of the curves is the same for both
density regimes and qualitatively similar to those calculated for
the free particle. For small N the region of enhanced mobility
at low temperatures becomes slightly larger with increasing
particle number. This effect is limited to small N as one can
see from the diagram (a) where the curves for N = 10 and
N = 50 coincide again.

(Toda-like) Morse rings with n > n̄c and multi-stable
Morse rings with n < nc and µ < ∆UM . It is worth
mentioning that only due to the non-linearity in the dissi-
pative terms the interactions between the particles affect
on the current in a ring. In Figure 15 one can see the re-
sults of our simulations for the rings with different density
regimes and particle numbers. Obviously the numerical re-
sults obtained for interacting Brownian particles are very
similar to the curves calculated for the free particle using
the solution of the FPE (51). The results do not depend
on the density of the rings. We may conclude that the type
of interaction (attracting or repulsive) is only a minor fac-
tor for the transport behavior of the system. Nevertheless
at small particle numbers the existence of a next-neighbor

coupling leads to an increase of the critical temperature Tc

characterizing the transition from high order (j ≈ √µ+K)
at low temperatures T < Tc to low order (j ≈ K) for
T > Tc. For the diagrams in Figure 15 we may estimate
0.1 ≤ Tc ≤ 0.2. The results found in presence of the exter-
nal field are in agreement with those from the symmetric
situation K = 0 in Section 3.2 where we also observed a
dominance of coherent motions at small temperatures.

5 Conclusion

In this work we discussed an 1d-model of active Brown-
ian particles with periodic boundary conditions. We con-
sidered Morse-interaction between neighboring particles
which are repulsive at short distances and attracting at
intermediate distances. Using this type of interaction our
model converges to the well-known Toda model at large
densities, while at low densities cluster may arise. The
coupling to a heat bath was modeled by Gaussian white
noise and additionally the particles were provided with in-
ternal energy depots. Due to conversion of depot energy
into kinetic energy the particles possess the property to
move actively.

In Section 2.3 we postulated that the Einstein re-
lation is the correct fluctuation-dissipation-theorem for
this model although there is a nonlinear effective friction
term in the Langevin equations for the system. For the
non-equilibrium system this lead to a probability density
f(v1, . . . , vN ) essentially differing from those of Maxwell-
type equilibrium distributions.

Because of the two competing influences on the dy-
namics (deterministic nonlinear pumping and stochastic
forces) we chose two different approaches to characterize
our model. We started from the low temperature regime
where the deterministic pumping dominates the dynamics.
On the basis of extensive computer simulations we found
that for low temperatures the system visits the coherent
motions (e.g. cluster rotations) more frequently. We sup-
pose that this is due to the fact that during the coherent
motions the potential energy of the system is minimized.
This effect should be generalizable to related classes of
models and also utilizable in applications.

For high temperatures a thermodynamical description
of the system turned out to be more convenient. In Sec-
tion 3.3 we introduced the pressure for our model and
investigated the non-equilibrium phase-diagrams. Effec-
tively, the additional energy conversion from the depots
has similar effects like an increase of the temperature in
the corresponding equilibrium system. The structure of
the phase diagrams is the same as in the diagrams of the
well-known van-der-Waals model. Because of the periodic
boundary conditions and the properties of the Morse in-
teractions there also exists a temperature-density regime
featuring negative pressure (i.e. if it could the ring would
shrink). The size of the region where this effect exists de-
creases with increasing particle number.

The last part of the paper we dedicated to transport
phenomena which may be observed in presence of external
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fields. The combination of active motion and external field
leads to enhanced mobility at low temperatures.

In conclusion we may say that although it is only a 1d-
model the investigated system shows a number of interest-
ing effects which reflect some of the phenomena found in
more complex systems. If we keep in mind the motivation
of the pumping term [4] it is certainly difficult to apply
this model to “purely” physical systems but we already
indicated a possible interpretation of the model with re-
spect to biological systems. In principle the model bears
strongly simplified three basic features of real ecological
systems

– interactions between neighbors including repulsion and
attraction;

– energy take up (like e.g. food, petrol) and conversion
into active motion;

– stochastic interactions with an environment.

In this sense also the originally purely physical quantities
“pressure”, “current” and “temperature” can be trans-
lated into more general context. For example one could
consider the pressure in our model as the quantity measur-
ing the tendency of system either to expand or to become
compressed. Analogously the current is a simple measure
for collective motion and the temperature a parameter for
the noise generated by the environment. From that point
of view we hope that our work contributes to the develop-
ment of toy models for more complex processes in nature.
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